Independence in finitary abstract elementary classes

نویسندگان

  • Tapani Hyttinen
  • Meeri Kesälä
چکیده

In this paper we study a specific subclass of abstract elementary classes. We construct a notion of independence for these AEC’s and show that under simplicity the notion has all the usual properties of first order non-forking over complete types. Our approach generalizes the context of א0 -stable homogeneous classes and excellent classes. Our set of assumptions follow from disjoint amalgamation, existence of a prime model over ∅ , Löwenheim-Skolem number being ω , LS(K) -tameness and a property we call finite character. We also start the studies of these classes from the א0 -stable case. Stability in א0 and LS(K) -tameness can be replaced by categoricity above the Hanf number. Finite character is the main novelty of this paper. Almost all examples of AEC’s have this property and it allows us to use weak types, as we call them, in place of Galois types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categoricity transfer in simple finitary abstract elementary classes

We continue to study nitary abstract elementary classes, de ned in [7]. We introduce a concept of weak κ -categoricity and an f-primary model in a א0 -stable simple nitary AEC with the extension property, and gain the following theorem: Let (K,4K) be a simple nitary AEC, weakly categorical in some uncountable κ . Then (K,4K) is weakly categorical in each λ ≥ min{κ,i(2א0 )+} . We have that if th...

متن کامل

Classes Stable in א 0

ELEMENTARY CLASSES STABLE IN א0 SAHARON SHELAH AND SEBASTIEN VASEY Abstract. We study abstract elementary classes (AECs) that, in א0, have amalgamation, joint embedding, no maximal models and are stable (in terms of the number of orbital types). We prove that such classes exhibit superstable-like behavior at א0. More precisely, there is a superlimit model of cardinality א0 and the class generat...

متن کامل

Superstability from categoricity in abstract elementary classes

Starting from an abstract elementary class with no maximal models, Shelah and Villaveces have shown (assuming instances of diamond) that categoricity implies a superstability-like property for nonsplitting, a particular notion of independence. We generalize their result as follows: given any abstract notion of independence for Galois (orbital) types over models, we derive that the notion satisf...

متن کامل

On the uniqueness property of forking in abstract elementary classes

In the setup of abstract elementary classes satisfying a local version of superstability, we prove the uniqueness property for μ-forking, a certain independence notion arising from splitting. This had been a longstanding technical difficulty when constructing forking-like notions in this setup. As an application, we show that the two versions of forking symmetry appearing in the literature (the...

متن کامل

Interpreting groups and fields in simple, finitary AECs

We prove a version of Hrushovski's 1989 results on almost orthogonal regular types in the context of simple and superstable nitary abstract elementary classes: from a certain expression of `non-orthogonality' we can conclude the existence of a group acting on the geometry obtained on the set of realizations of a regular Lascar strong type, and if we rule out the presence of a non-classical grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2006